

## Research Paper

### **FTIR Spectral Analysis and Bio-functional Characterization of *Ficus carica* and *F. racemosa* Leaves for Therapeutic Applications**

Zainab Roohi<sup>1</sup>, Fatma Hussain<sup>1\*</sup>, Rafia Rehman<sup>2</sup>, Yousra Ibrahim<sup>1</sup>, Ajwa<sup>1</sup>

<sup>1</sup>Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan

<sup>2</sup>Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan

\*Corresponding Author's email: fatmauf@yahoo.com

#### **ARTICLE INFO**

##### **Article history:**

Received: 28-08-2025

Revised: 06-11-2025

Accepted: 06-11-2025

Available online: 31-12-2025

#### **Abstract**

*Ficus carica*, a common fig and *Ficus racemosa*, a cluster fig which are well-known plants of the genus *Ficus* (Moraceae family) that demand comparative therapeutic assessment. The study was designed to bio-fabricate a therapeutic application and Fourier transform infrared spectral analysis of both *Ficus* species. Microwave-assisted extraction method was used to prepare aqueous leaf extracts. Antioxidant profile was determined through total phenolic content (TPC), total flavonoid content (TFC) and DPPH radical scavenging assays. Antibacterial activity was assessed using the agar well diffusion method. Alpha-amylase inhibition and hemolytic assays were used to determine antidiabetic and cytotoxic potentials, respectively, in aqueous leaf extracts of *F. carica* and *F. racemosa*. The *F. carica* and *F. racemosa* exhibited  $113.74 \pm 3.61$  mg GAE/100g and  $89.51 \pm 5.65$  mg GAE/100g TPC ( $p > 0.05$ ), respectively. TFC in *F. carica* was  $55.13 \pm 4.04$  mg CE/100g and  $45.89 \pm 1.29$  mg GAE/100g in *F. racemosa* ( $p > 0.05$ ). The percentage of DPPH radical scavenging activity in *F. carica* was  $43.61 \pm 2.01\%$  while in *F. racemosa*, it was  $53.41 \pm 2.23\%$  ( $p > 0.05$ ). Both samples exhibited mild antimicrobial activities (8 to 20 mm growth inhibition zones). Moderate alpha-amylase inhibition was observed (*F. carica*:  $25.54 \pm 0.88\%$  and *F. racemosa*:  $21.29 \pm 15.81\%$ ), while hemolytic activity was higher in *F. racemosa* ( $13.2 \pm 1.22\%$ ) than in *F. carica* ( $12.47 \pm 2.79\%$ ). FTIR analysis confirmed the presence of alcohols, carboxylic acids, aldehydes, phenols, alkenes, alkynes, esters, ethers, fluoride, amines and aromatics. It is concluded that both medicinal plants exhibited antioxidant, antimicrobial and antidiabetic activities. The *F. racemosa* and *F. carica* extracts exhibited low hemolytic activity, indicating good biocompatibility, with FRA being marginally more hemolytic than *F. carica* but also having lower cytotoxic effects. These findings support their future application in pharmacological formulations. Future research involving different extraction techniques and animal trials could improve therapeutic understanding and clinical applications.

#### **Keywords:**

*Ficus*, *fig*, *alpha amylase*, *hemolysis*, *spectroscopy*

## **Introduction**

A wide variety of plants found throughout the world have been used since ancient times for therapeutic purposes (Chaachouay & Zidane, 2024). Plants from certain taxonomic groups, also known as medicinal plants, produce compounds called secondary metabolites through various metabolic pathways in response to environmental stress or pathogens (Castelli and Lopez, 2022). Due to their effectiveness against a range of inflammatory and pathogenic diseases, these bioactive compounds are essential in both traditional remedies and modern pharmacotherapy (Riaz et al., 2023)

*Ficus carica* and *F. racemosa*, two medicinal plants, belong to the genus *Ficus* (Family Moraceae). *F. carica* is generally identified as "common fig or wild fig," whose leaves fall seasonally. It is the oldest cultivated tree, has historical value in many cultures, and is widely cultivated due to its edible and nutritious fruit. It possesses several phytochemicals that are potent for therapeutic purposes (Fazel et al., 2024). In addition, its potent therapeutic consequence has also been mentioned in the hadith (Spagnoli & Yavari, 2022).

Different parts of *F. carica* have chemicals like phenolic compounds, amino acids, vitamins and minerals. Phytochemicals include phenolic acids, flavonoids, ceramides, steroids, cerebrosides and triterpenoids (Hajam & Saleem, 2022). Leaves, fruits, roots and bark of this plant possess significant antimicrobial, antioxidant, antidiabetic, cytotoxic, hepatoprotective, anticholinesterase, anti-inflammatory, antipyretic and anti-angiogenesis activities. These activities are useful to treat a number of diseases like diabetes, asthma, ulcers, vomiting, gonorrhea, skin and heart diseases (Rasool et al., 2023).

*F. racemosa* is generally identified as "cluster fig." It is characterized by its cluster fruit, which grows directly on the trunk and branches. Different sections of the *F. racemosa* tree, such as fruits, leaves, roots and bark, possess proteins, lipids, carbohydrates and minerals. Phytochemicals in this plant include alkaloids, flavonoids, glucosides, sterols, furanocoumarins and terpenoids (Pahari et al., 2022). Research studies showed that this plant also exhibits antimicrobial, antioxidant, anti-inflammatory, antidiabetic, cytotoxic, antipyretic, anti-analgesic, and antidiarrheal properties. Various parts of this plant can treat many diseases like diarrhea, mumps, tonsillitis, menorrhagia and other liver, urinary and inflammatory diseases (Kannan et al., 2024)

Limited comparative assessment of *F. carica* and *F. racemosa* leaves, particularly in terms of evaluating a broad range of bioactivities, is available. Additionally, as per our knowledge, none of the previous studies have reported the hemolytic potential of these two plants. The objective of this research was to conduct a relative bio-fabrication of the therapeutic (antioxidant, antidiabetic, antimicrobial, and cytotoxic properties) application, along with Fourier transform infrared (FTIR) spectral analysis of aqueous leaf extracts from these two well-known species of the *Moraceae* family.

## Materials and Methods

### Sample preparation

Leaves of *F. carica* and *F. racemosa* collected from the Institutional Botanical Garden were shade-dried and ground into a powder form. The sample and water (1:5 ratio) mixture was placed in the microwave. The subsequent heating, cooling and heating were done three times till the separation of extracts using the filtration method. The samples were dried in the water bath at 52-55°C. The *F. carica* and *F. racemosa* leaves aqueous extracts were used for analysis of their bio-fabrication and FTIR spectral analysis (Abubakar & Haque, 2020).

### Antioxidant contents and activity

For the estimation of total phenolic content (TPC) as milligrams of gallic acid equivalents (GAE/100 g), 50 µL test sample (S), 40 µL sodium carbonate ( $\text{Na}_2\text{CO}_3$ ) and 10 µL (10%) FC reagent were mixed, incubated (2 hours) at room temperature and absorbance was measured (765 nm). For total flavonoid content (TFC) assessment as milligrams of catechin equivalent (mg CE) per 100 grams, 10 µL S, 10.5 µL sodium nitrate and 67 µL of distilled water were mixed. Then 19 µL (10%)  $\text{AlCl}_3$  was added and the absorbance was evaluated (510 nm). In the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay for antioxidant activity, a mixture of 250 µL DPPH solution and 2.5 µL S was incubated at ambient temperature for 35 minutes. Ascorbic acid was the positive control (C). At 517 nm, absorbance (Abs) was calculated (Ali et al., 2022). Percent Antioxidant activity:  $[(\text{Abs. of C} - \text{Abs. of S}) / \text{Abs. of C}] \times 100$ .

### Antimicrobial activity

In the well diffusion assay, plant extracts and agar medium were prepared in Eppendorf tubes and flasks, respectively. The flask containing agar and empty petri plates was autoclaved. Then, inoculum (100 µL), *Staphylococcus aureus* (ATCC 25923) and *Escherichia coli* (ATCC 25922) were poured into the separate flasks. Plant extracts (80 µL) were added to the wells along with the bacterial strains. Ciprofloxacin served as the positive control and in the negative control sample, distilled water was added instead of the plant extract. After overnight incubation (37°C), the zones of growth inhibition (mm) were calculated (Ahmed et al., 2020).

### Antidiabetic activity (Alpha amylase inhibition assay)

For assay, 30 µL of sample (s) and acarbose (c) were mixed with the enzyme solution (10 µL). After pre-incubation at room temperature for 10 minutes, 1 percent starch (40 µL) was added. The reaction was halted by adding 20 µL of 1 M HCl, followed by a 30-minute incubation. For the detection of substrate unhydrolyzed by the enzyme, iodine (75 µL) was added and absorbance (A) was recorded at 580 nm (Ali et al., 2022). % inhibition =  $[1-\text{Ac} / \text{As}] \times 100$ .

### Cytotoxic activity (Hemolytic assay)

Briefly, 3 mL of human blood and 5 mL of chilled phosphate-buffered saline (PBS) were mixed and centrifuged for 5 minutes. This washing step was repeated three times to isolate

## FTIR Analysis and Bio-functional Characterization of *Ficus carica* and *F. racemosa* Leaves

red blood cells (RBCs). Subsequently, 20  $\mu$ L of plant sample (s) was mixed with 180  $\mu$ L of the RBC suspension and centrifuged again for 5 minutes. The supernatant was diluted with 900  $\mu$ L of chilled PBS, and absorbance (a) was assessed at 570 nm (Kauser et al., 2018). Triton-X 100 was the positive control (pc) and PBS was the negative control (nc). % hemolysis:  $[(a.s - a.nc)] / a.pc \times 100$ . Where, a.nc: absorbance of negative control, a.s: absorbance of test samples, a.pc: absorbance of positive control.

### FTIR spectral analysis

For Fourier transform Infrared (FTIR) spectroscopy, plant extracts (1 mg) were finely ground with 100 mg potassium bromide (KBr) in a ratio of 1:100. After mixing, it was pressed under high pressure to form a pellet and subsequently investigated in the spectral range of 400 - 4000  $\text{cm}^{-1}$  (Kamran et al., 2019).

### Statistical analysis

For triplicate measurements, results are reported as Mean  $\pm$  Standard Deviation. ANOVA was used to determine the significance of the results using Minitab statistical software version 17.

## Results

The percentage yield of extracts obtained by the microwave-assisted method was 45.98% for *F. carica* and 34.35% for *F. racemosa*.

### Antioxidant contents and activity

The *F. carica* and *F. racemosa* exhibited  $113.74 \pm 3.61$  mg GAE/100g and  $89.51 \pm 5.65$  mg GAE/100g TPC, respectively. TFC in *F. carica* was  $55.13 \pm 4.04$  mg CE/100g and  $45.89 \pm 1.29$  mg GAE/100g in *F. racemosa*. The percentage of DPPH radical scavenging activity in *F. carica* was  $43.61 \pm 2.01\%$  while in *F. racemosa*, it was  $53.41 \pm 2.23\%$  (Figure 1). The difference between TPC, TFC and antioxidant activities of *F. carica* and *F. racemosa* was non-significant ( $p > 0.05$ ). Although the mean values differ, the differences are not statistically significant, which means they could be attributable to random variation.

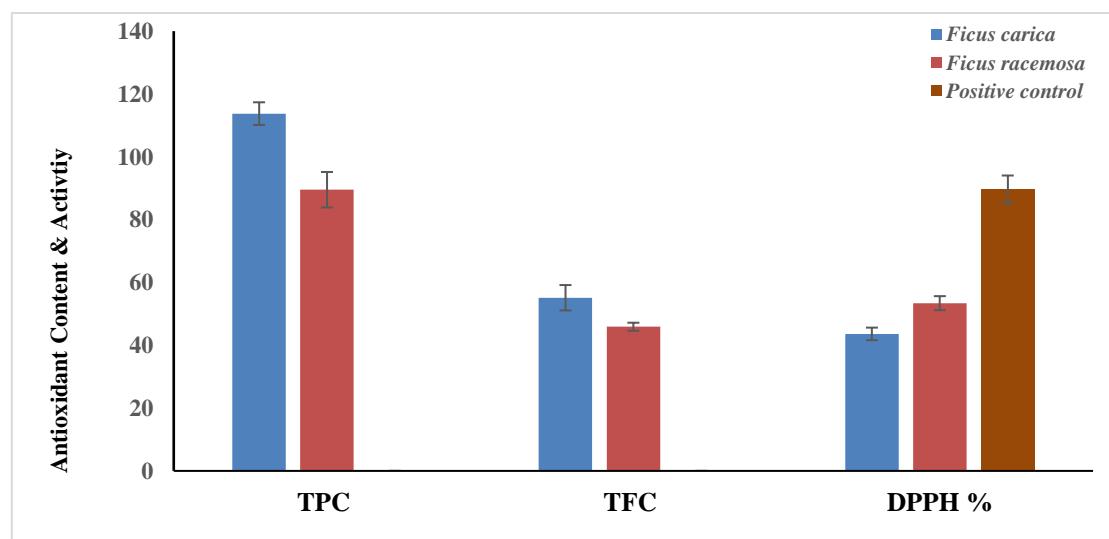



Figure 2. Antioxidant Profile

## Antimicrobial activity

Figure 2 represents the antimicrobial activity of *F. carica* extract against *E. coli*, with an 8 mm zone of growth inhibition (ZGI) and 8 mm ZGI against *S. aureus*. Meanwhile, the *F. racemosa* showed a ZGI of 20 mm against *E. coli* and an 8 mm ZGI against *S. aureus*. Both samples exhibited mild antimicrobial activities. The positive control (Ciprofloxacin) showed 27 mm ZGI for *E. coli*, while *Streptococcus aureus* showed a 28 mm ZGI. The negative control presented 0 mm zone of inhibition against both strains.

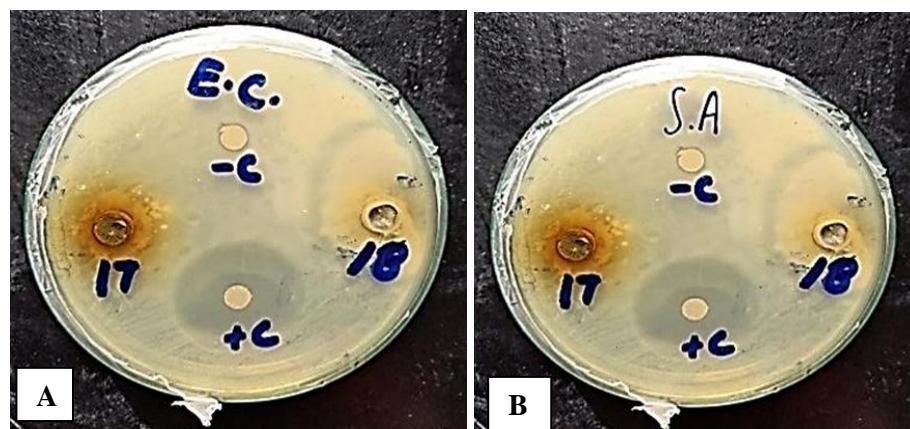



Figure 2. Antimicrobial activity of *F. carica* (17) and *F. racemosa* (18) against *E. coli* (A), and against *S. aureus* (B)

## Antidiabetic activity

Almost analogous ( $p > 0.05$ ) antidiabetic activity was exhibited by both samples. The aqueous extract of *F. carica* showed  $25.54 \pm 0.88$  % inhibition of alpha amylase; whereas the aqueous extract of FRA indicated  $21.29 \pm 15.81$  % enzyme inhibitory potential and the percentage enzyme inhibition by the positive control was  $81.47 \pm 5.34$  %. Both samples showed moderate antidiabetic potential (Figure 3).

## Cytotoxicity

The aqueous extracts of *F. carica* and *F. racemosa* leaves showed  $12.47 \pm 2.79$  % and  $13.2 \pm 1.22$  % hemolytic activities ( $p > 0.05$ ), respectively, indicating the safe effect of plant samples being less toxic towards RBCs. However, 94.9% cell lysis was observed by the positive control (Figure 3).

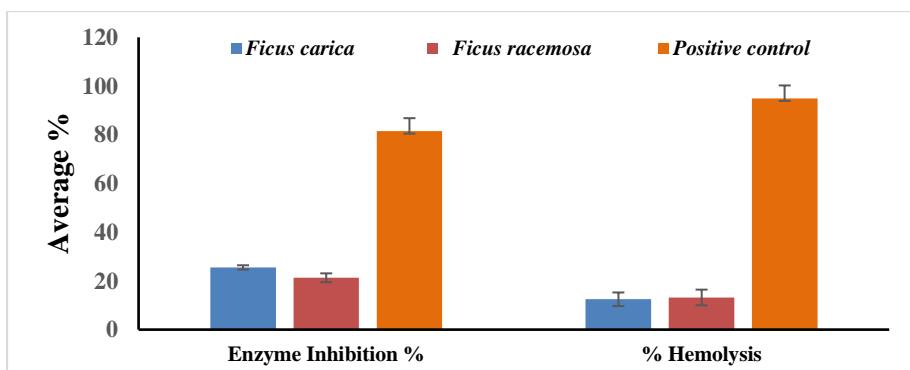
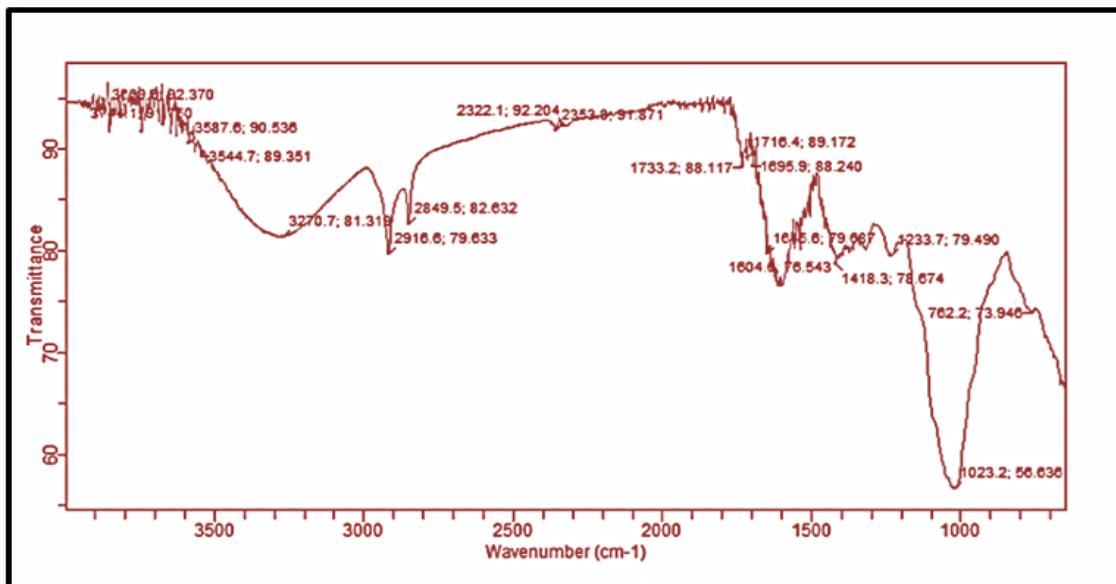




Figure 3. Antidiabetic and Cytotoxic Potential

### FTIR spectral analysis

Different functional groups were identified through FTIR in the *F. carica* (Table 1, and Figure 4). Alcoholic compounds were spotted by peaks at  $3900.7\text{ cm}^{-1}$ ,  $3880.2\text{ cm}^{-1}$ ,  $3863.4\text{ cm}^{-1}$ ,  $3814\text{ cm}^{-1}$ ,  $3744.1\text{ cm}^{-1}$  and  $3668.6\text{ cm}^{-1}$ . The presence of alcohols and alkyne was found at strong, broad and sharp peaks of  $3270.7\text{ cm}^{-1}$ . Amine salt, alkane, alcohol, and carboxylic acid compounds were detected as a strong band measured at  $2918\text{ cm}^{-1}$ . Carboxylic acid, amine salt, alkane, and alcohol were all observed at a peak of  $2849\text{ cm}^{-1}$ . A peak at  $2353.8\text{ cm}^{-1}$  showed the presence of carboxylic acid, amine salt and alcohol. Aldehyde was present at a strong peak at  $1733.2\text{ cm}^{-1}$ . A solid band at  $1716.4\text{ cm}^{-1}$  showed the presence of  $\alpha, \beta$ -unsaturated ester. Conjugated acid and conjugated aldehyde were detected at  $1695.9\text{ cm}^{-1}$ . Conjugated alkene, cyclic alkene and amine were present at  $1634.4\text{ cm}^{-1}$ . A band at  $1539.4\text{ cm}^{-1}$  showed the presence of a nitro group. A peak at  $1455.5\text{ cm}^{-1}$  showed the presence of an aromatic group. A band at  $1418.3\text{ cm}^{-1}$  showed the presence of the alcohol group. Phenol and sulphone were detected at a peak of  $1317.6\text{ cm}^{-1}$ . A solid band at  $1235.6\text{ cm}^{-1}$  showed the presence of alkyl, aryl, ether and amine. Amine and sulfoxide were detected at  $1010\text{ cm}^{-1}$ .



**Figure 4. FTIR spectra of *F. carica* leaves**

The values of absorption that were anticipated by the FTIR for *F. racemosa* are shown in Table 1 and Figure 5. Alcohols were present as indicated by peaks at  $3744.1\text{ cm}^{-1}$ ,  $3669.6\text{ cm}^{-1}$ ,  $3587.6\text{ cm}^{-1}$  and  $3544.7\text{ cm}^{-1}$ . Alcohols, alkynes and carboxylic acid were present as shown by the band measured at  $3270.7\text{ cm}^{-1}$ . Alkanes were detected at a peak of  $2916.6\text{ cm}^{-1}$ . Alkanes and aldehydes were present at  $2849.5\text{ cm}^{-1}$ . Amino groups were detected at medium and strong peaks of  $2322.1\text{ cm}^{-1}$ . Aromatic compounds and aldehydes were detected at a peak of  $1733.2\text{ cm}^{-1}$ . A solid band at  $1716.4\text{ cm}^{-1}$  showed the presence of  $\alpha\beta$ -unsaturated ether, aliphatic ketones and carboxylic acid. Peak at  $1695.9\text{ cm}^{-1}$ , showed the presence of aromatic compounds. Imine was detected at a peak of  $1645.6\text{ cm}^{-1}$ . Conjugated alkenes, amine and cyclic alkene were detected at a peak of  $1604.6\text{ cm}^{-1}$ . Carboxylic acid and alcohols were present at a medium peak of  $1418.3\text{ cm}^{-1}$ . Alkyl, aryl, amine and ether were detected at  $1233.7\text{ cm}^{-1}$ .

Amines were detected at a peak of  $1032\text{ cm}^{-1}$ . At a peak of  $762.2\text{ cm}^{-1}$ , the presence of a medium peak of halo compounds was shown.

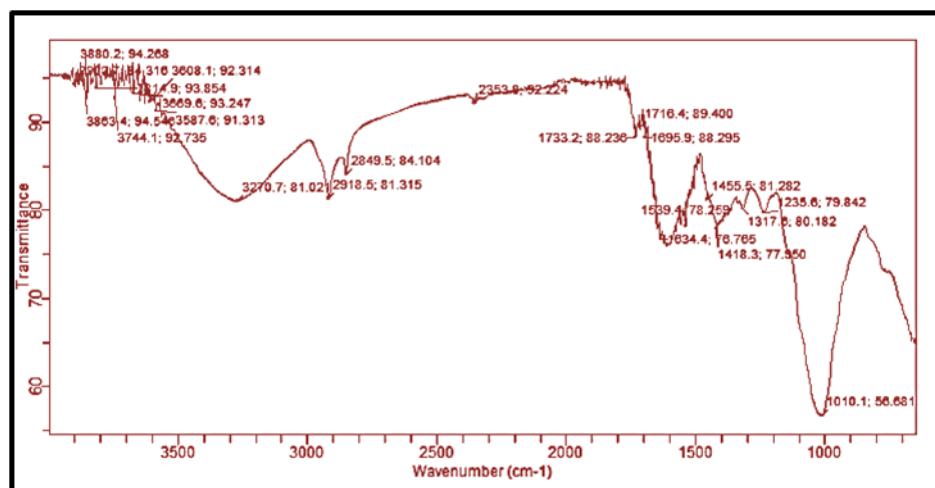



Figure 5. FTIR spectra of *F. racemosa* leaves

Table 1: FTIR Spectral analysis

| <i>F. carica</i>                            |                   |                                                                                    | <i>F. racemosa</i>                         |                        |                                                                     |
|---------------------------------------------|-------------------|------------------------------------------------------------------------------------|--------------------------------------------|------------------------|---------------------------------------------------------------------|
| Peak (Wave number $\text{cm}^{-1}$ )        | Bond              | Functional group                                                                   | Peak (Wave number $\text{cm}^{-1}$ )       | Bond                   | Functional group                                                    |
| 3900.7, 3880.2,<br>3744.1, 3669.6<br>3270.7 | O-H<br>O-H<br>C-H | Alcohols<br>Alcohol<br>Alkyne                                                      | 3744.1, 3669.6<br>3587.6, 3544.7<br>3270.7 | O-H<br>O-H, C-H<br>C-H | Alcohol<br>Alcohol<br>Alkyne                                        |
| 2918.5                                      | O-H<br>N-H<br>C-H | Alkane, Alcohol,<br>carboxylic Acid<br>Carboxylic acid,<br>Alcohol, Amino<br>salts | 2916.6, 2849.5                             | C-H                    | Alkane<br>Aldehyde                                                  |
| 2849.5, 2353.8                              | O-H<br>N-H        | Carboxylic acid,<br>Alcohol, Amino<br>salts                                        | 2353.8, 2322.1                             | N-H<br>C-H             | Amino group                                                         |
| 1733.2<br>1716.4                            | C=O<br>C=O        | Aldehyde<br>$\alpha, \beta$ -unsaturated<br>ester                                  | 1733.2<br>1716.4                           | C=O<br>C=O             | Aldehyde<br>$\alpha, \beta$ unsaturated<br>ester                    |
| 1695.9                                      | C=O               | Aromatic<br>compound                                                               | 1695.9                                     | C-H                    | Aromatic<br>compound                                                |
| 1634.4                                      | C=C, N-H          | Alkene, Amines<br>aromatic Alkene                                                  | 1645.6                                     | C=N                    | Imine/oxime                                                         |
| 1539.4                                      | N-O               | Nitro group                                                                        | 1604.6                                     | C=C, N-H               | Alkene, Amine<br>aromatic Alkene                                    |
| 1455.5<br>1418.3                            | C-H<br>O-H        | Aromatic group<br>Alcohol                                                          | 1418.3<br>1233.7                           | O-H<br>C-O, C-N        | Alcohol<br>Amine group, ether<br>linkage with alkyl<br>& aryl group |
| 1317.6                                      | O-H<br>S=O        | Phenolic group                                                                     | 1023.2                                     | C-N                    | Amines                                                              |
| 1235.6                                      | C-O, C-N          | Amine group, ether<br>linkage with alkyl<br>& aryl group                           | 762.2                                      | C-C                    | Halogenated<br>groups                                               |
| 1010.1                                      | C-N, S=O          | Amino & sulfinyl<br>groups                                                         | -                                          | -                      | -                                                                   |

## **Discussion**

The current study evaluated the phytochemical content, antioxidant, antimicrobial, antidiabetic, cytotoxic activities, and functional group composition of aqueous leaf extracts of *F. carica* and *F. racemosa*. In this investigation, both *F. carica* and *F. racemosa* aqueous extracts exhibited moderate levels of TPC and TFC. *F. carica* recorded  $113.74 \pm 3.61$  mg GAE/100g TPC and  $55.13 \pm 4.04$  mg CE/100g TFC, while FRA showed  $89.51 \pm 5.65$  mg GAE/100g TPC and  $45.89 \pm 1.29$  mg CE/100g TFC. These TPC values in our research were higher than those reported by Reveny et al. (2023) (33.93 - 40.76 mg GAE/g). These TFC values in our research were lower than those documented by El Ghouizi et al. (2023) (74.58 - 148.17 mg CE/g). For *F. racemosa*, the TPC observed in this study exceeded the  $40.68 \pm 9.17$  mg GAE/g reported by Sharma and Kumar (2021). Regarding TFC, the values obtained in this work for *F. carica* were lower than those reported by El Ghouizi et al. (2023) ( $148.17 \pm 8.54$  mg CE/g) and Pawar et al. (2023) ( $65.76 \pm 0.29$  mg CE/g), emphasizing the influence of solvent choice on flavonoid extraction.

In terms of antioxidant activity, our findings showed that *F. racemosa* exhibited higher DPPH radical scavenging activity ( $53.41 \pm 2.23\%$ ) compared to *F. carica* ( $43.61 \pm 2.01\%$ ), though both values were lower than the 75.5% inhibition reported by Abdel-Rahman et al. (2021) for ethanolic *F. carica* extracts. The  $IC_{50}$  values reported in previous studies for *F. racemosa* methanol extracts (31.87 and 334.95  $\mu$ g/ml) suggest greater potency than the crude percentage inhibition measured in the current analysis. Although it is counterintuitive that extracts with lower TPC and TFC exhibit higher antioxidant activity but some possible reasons for such results are given. Presence of other active compounds like terpenes (that behave as antioxidants) and synergistic effects of different compounds may increase overall antioxidant capacity. Moreover, high TFC and TPC may exhibit pro-oxidant activity that ultimately reduces antioxidant potential.

Assessment of antimicrobial potential was limited as it was tested against two strains only, which refers to the general screening of plant extracts. The results revealed that *F. racemosa* showed a significantly larger zone of inhibition (20 mm) against *E. coli* than *F. carica* (8 mm), while both extracts had equal activity (8 mm) against *S. aureus*. Compared with the positive control, Ciprofloxacin (27–28 mm), the plant extracts showed moderate but noteworthy inhibition.

These findings partially agree with prior studies; Tikent et al. (2024) reported higher ZGIs for *F. carica* hydroethanolic extracts - 12.6 mm for *E. coli* and 10.5 mm for *S. aureus* - than those observed in the current study, possibly due to differences in solvent polarity or extract concentration. Similarly, Al-Ogaili et al. (2020) reported modest antimicrobial activity for a 20% aqueous *F. carica* extract, showing 10 mm and 9 mm zones against *E. coli* and *S. aureus*, respectively, which are also slightly higher than the 8 mm ZGIs observed in the present work. Pant et al. (2025) reported smaller zones (13 mm and 12 mm) for *F. racemosa* fruit extracts compared to the larger inhibition observed in our leaf extract assays, suggesting variability depending on plant part and extraction conditions. The current investigation demonstrated moderate  $\alpha$ -amylase inhibitory activity for *F. carica* ( $25.54 \pm 0.88\%$ ) and *F. racemosa* ( $21.29 \pm 15.81\%$ ), substantially lower than the positive control ( $81.47 \pm 5.34\%$ ).

These results indicate the limited enzyme inhibitory potential of the aqueous extracts. This contrasts with stronger antidiabetic effects observed in previous studies: Lin and Zhang (2023) reported a 35.75% glucose reduction with a dichloromethane *F. carica* extract, while Pahari et al. (2022) observed blood glucose reductions of 18.4% and 17.0% at 5 and 24 hours, respectively. The discrepancy highlights differences in solvent polarity and assay models, as the current *in vitro* evaluation may underestimate complex *in vivo* effects.

In this research, hemolytic activity was low for both *F. carica* ( $12.47 \pm 2.79\%$ ) and *F. racemosa* ( $13.2 \pm 1.22\%$ ), compared to the positive control, which induced 94.9% cell lysis, indicating that both extracts are largely non-cytotoxic to normal human red blood cells. These results concur with Nirwana et al. (2018), who reported high cell viability ( $>77\%$ ) even at elevated concentrations of *F. carica* ethanol extracts. However, previous research indicates selective cytotoxicity against cancer cell lines; Purnamasari et al. (2019) observed 82.78% inhibition of liver cancer cells by methanolic *F. carica* extract, while Khan et al. (2017) reported 57.37% DLA cell death at an  $IC_{50}$  of 175  $\mu\text{g/mL}$  using ethanol extract of *F. racemosa* leaves, and Gorla et al. (2016) observed 47.83% cytotoxicity against the A-549 lung cancer cell line using a hexane extract at 200  $\mu\text{g/mL}$ ; both reported significant cytotoxicity in other cancer cell models. This suggests the aqueous extracts tested in this analysis have biocompatibility with normal cells, while *Ficus* species may selectively target cancer cells.

FTIR analysis in the present investigation revealed multiple key functional groups in both *F. carica* and *F. racemosa*. *F. carica* showed strong O–H stretches at 3900.7, 3744.1, and 3668.6  $\text{cm}^{-1}$ , and aldehyde groups at 1733.2  $\text{cm}^{-1}$ . *F. racemosa* exhibited O–H peaks at 3744.1, 3587.6, 3544.7, and 3669.6  $\text{cm}^{-1}$ , with additional imine (1645.6  $\text{cm}^{-1}$ ) and halo group signals (762.2  $\text{cm}^{-1}$ ). Both extracts shared peaks related to alcohols/alkynes (3270.7  $\text{cm}^{-1}$ ), alkanes/carboxylic acids (2918–2849  $\text{cm}^{-1}$ ), and ethers/amines (1235–1010  $\text{cm}^{-1}$ ).

These results align with those reported by Abu-Seraj et al. (2021) who observed O–H and N–H stretching at 3471.87–3329.14  $\text{cm}^{-1}$ , respectively; alkane at 2881.65  $\text{cm}^{-1}$  and 2850.79  $\text{cm}^{-1}$ , nitro group (N–O) Symmetric stretching at 1334.67  $\text{cm}^{-1}$  and 1313.52  $\text{cm}^{-1}$ , aliphatic amines at 1232.51–1028.06  $\text{cm}^{-1}$ , alkenes (=C–H) bending at 989.48–719.45  $\text{cm}^{-1}$  and alkyl halides stretching at 667.37–657.73  $\text{cm}^{-1}$ . FTIR spectra provided limited information about phytochemicals, as it identified only the functional groups present. A more comprehensive structural characterization with high-performance liquid chromatography and gas chromatography mass spectrometry is warranted to correlate the phyto-constituents with therapeutic efficacy.

## Conclusion

The current research study observed that aqueous extracts of *F. carica* and *F. racemosa* are rich in a few phenolic compounds. Both medicinal plants exhibited antioxidant, antimicrobial and antidiabetic activities. The *F. racemosa* and *F. carica* extracts exhibited low hemolytic activity, indicating good biocompatibility, with *F. racemosa* being marginally more hemolytic than *F. carica* but also having lower cytotoxic effects. FTIR of both plants characterized the structure and identified the functional groups of both *F. carica* and *F. racemosa*. In conclusion, this research indicated that aqueous extracts of both have extraordinary pharmacological

## FTIR Analysis and Bio-functional Characterization of *Ficus carica* and *F. racemosa* Leaves

activities and in-depth studies in other polar and non-polar solvents are required to further evaluate the remarkable properties and therapeutic potential of these medicinal plants.

### References

- Abdel-Rahman, R., Ghoneimy, E., Abdel-Wahab, A., Eldeeb, N., Salem, M., Salama, E., & Ahmed, T. (2021). The therapeutic effects of *Ficus carica* extract as antioxidant and anticancer agent. *South African Journal of Botany*, 141, 273–277. <https://doi.org/10.1016/j.sajb.2021.04.019>
- Abubakar, A. R., & Haque, M. (2020). Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. *Journal of Pharmacy and Bioallied Sciences*, 12(1), 1–10. [https://doi.org/10.4103/jpbs.JPBS\\_175\\_19](https://doi.org/10.4103/jpbs.JPBS_175_19)
- Abu-Seraj, N. A., Omran, A. M., Al, M. H. G., & Talib, A. S. A. A. (2021). Phytochemical analysis of *Ficus carica* leaves by using technical methods. *Plant Cell Biotechnology and Molecular Biology*, 22(33&34), 70–87. <https://ikprress.org/index.php/PCBMB/article/view/6278/5697>
- Ahmed, T., Shahid, M., Noman, M., Niazi, M. B. K., Mehmood, F., Manzoor, I., & Chen, J. (2020). Silver nanoparticles synthesized by using *Bacillus cereus* SZTI 90 ameliorated the damage of bacterial leaf blight pathogen in rice. *Pathogens*, 9(3), 160–174. <https://doi.org/10.3390/pathogens9030160>
- Ali, T., Hussain, F., Naeem, M., Khan, A., & Al-Harrasi, A. (2022). Nanotechnology approach for exploring the enhanced bioactivities and biochemical characterization of freshly prepared *Nigella sativa* L. nanosuspensions and their phytochemical profile. *Frontiers in Bioengineering and Biotechnology*, 10, 1–14. <https://doi.org/10.3389/fbioe.2022.888177>
- Al-Ogaili, N. A., Osama, S., Jazme, D., & Saad, S. (2020). *In vitro* antibacterial investigation and synergistic effect of *Ficus carica* and *Olea europaea* aqueous extracts. *Research Journal of Pharmacy and Technology*, 13(1), 1–8. <https://doi.org/10.5958/0974-360X.2020.00221.8>
- Castelli, M. V., & Lopez, S. N. (2022). Chemistry, biological activities, and uses of *Ficus carica* latex. In *Gums, resins and latexes of plant origin: Chemistry, biological activities and uses* (pp. 801–822). Springer International Publishing. [https://link.springer.com/referenceworkentry/10.1007/978-3-030-91378-6\\_34](https://link.springer.com/referenceworkentry/10.1007/978-3-030-91378-6_34)
- Chaachouay, N., & Zidane, L. (2024). Plant-derived natural products: A source for drug discovery and development. *Drugs and Drug Candidates*, 3(1), 184–207. <https://doi.org/10.3390/ddc3010011>
- El Ghouizi, A., Ousaaid, D., Laaroussi, H., Bakour, M., Aboulghazi, A., Soutien, R. S., Hano, C., & Lyoussi, B. (2023). *Ficus carica* (Linn.) leaf and bud extracts and their combination attenuate type-1 diabetes and its complications via the inhibition of oxidative stress. *Foods*, 12(4), 759. <https://doi.org/10.3390/foods12040759>

- Fazel, M. F., Abu, I. F., Mohamad, M. H. N., Mat Daud, N. A., Hasan, A. N., Aboo Bakkar, Z., Md Khir, M. A. N., Juliana, N., Das, S., Mohd Razali, M. R., Zainal Baharin, N. H., & Ismail, A. A. (2024). Physicochemistry, nutritional, and therapeutic potential of *Ficus carica*—A promising nutraceutical. *Drug Design, Development and Therapy*, 18, 1947–1968. <https://doi.org/10.2147/DDDT.S436446>
- Gorla, U. S., & Shankar, K. R. (2016). *In vitro* anti-obesity and anti-cancer activities of different extracts of *Annona squamosa* L. and *Ficus racemosa* L. leaves. *World Journal of Pharmaceutical Research*, 5(11), 1184–1191. <https://doi.org/10.20959/wjpr201611-7298>
- Hajam, T. A., & Saleem, H. (2022). Phytochemistry, biological activities, industrial and traditional uses of fig (*Ficus carica*): A review. *\*Chemico-Biological Interactions*, 368\*, 110237. <https://doi.org/10.1016/j.cbi.2022.110237>
- Kamran, U., Bhatti, H. N., Iqbal, M., Jamil, S., & Zahid, M. (2019). Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from *Cinnamomum verum* bark extract. *Journal of Molecular Structure*, 1179, 532–539. <https://doi.org/10.1016/j.molstruc.2018.11.006>
- Kannan, M. P., Sreeraman, S., Arokiyaraj, S., Sundaram, V., Kushwah, R. B. S., Bupesh, G., & Amalorpavanaden, N. D. (2024). Exploring major bioactive phytocompounds of *Ficus racemosa* and its key pharmacological activities. *\*Journal of King Saud University-Science*, 36\*(1), 102956. <https://doi.org/10.1016/j.jksus.2023.102956>
- Kauser, A., Shah, S. M. A., Iqbal, N., Murtaza, M. A., Hussain, I., Irshad, A., & Riaz, M. (2018). *In vitro* antioxidant and cytotoxic potential of methanolic extracts of selected indigenous medicinal plants. *Progress in Nutrition*, 20(4), 706–712. <https://doi.org/10.23751/pn.v20i4.7523>
- Khan, A., Anand, V., Badrinarayanan, V., Thirunethiran, K., & Natarajan, P. (2017). *In vitro* antioxidant and cytotoxicity analysis of leaves of *Ficus racemosa*. *Free Radicals and Antioxidants*, 7(1), 8–12. <https://doi.org/10.5530/fra.2017.1.2>
- Kumar, M. A., Sonal, U., Akshi, G., Ebenezer, J. K., Lawrence, R., & Nidhi, M. (2021). Microwave-assisted green synthesis of silver nanoparticles with leaf of *Ficus racemosa* and its *in vitro* antibacterial analysis and dye catalytic activity. *Research Journal of Chemistry and Environment*, 25(8), 111–119.
- Lin, L., & Zhang, Y. (2023). Chemical constituents and antidiabetic activity of dichloromethane extract from *Ficus carica* leaves. *Diabetes, Metabolic Syndrome and Obesity*, 16, 979–991. <https://doi.org/10.2147/DMSO.S405150>
- Nirwana, I., Rianti, D., Soekartono, R. H., Listyorini, R. D., & Basuki, D. P. (2018). Antibacterial activity of fig leaf (*Ficus carica* Linn.) extract against *Enterococcus faecalis* and its cytotoxicity effects on fibroblast cells. *Veterinary World*, 11(3), 342–347. <https://doi.org/10.14202/vetworld.2018.342-347>

## FTIR Analysis and Bio-functional Characterization of *Ficus carica* and *F. racemosa* Leaves

- Pahari, N., Majumdar, S., Karati, D., & Mazumder, R. (2022). Exploring the pharmacognostic properties and pharmacological activities of phytocompounds present in *Ficus racemosa* Linn: A concise review. \*Pharmacological Research-Modern Chinese Medicine, 4\*, 100137. <https://doi.org/10.1016/j.prmcm.2022.100137>
- Pant, H., Negi, S., Saklani, K., Chandra, S., de Lima, L. R., & Coutinho, H. D. M. (2025). Chemical composition and pharmacological activities of *Ficus racemosa* fruit methanolic extract. \*Pharmacological Research-Natural Products, 7\*, 100163. <https://doi.org/10.1016/j.prenap.2025.100163>
- Pawar, S., Pawade, K., Nipate, S., Balap, A., Pimple, B., Wagh, V., & Gaikwad, A. (2023). Preclinical evaluation of the diabetic wound healing activity of phytoconstituents extracted from *Ficus racemosa* Linn. leaves. *International Journal of Experimental Research and Reviews*, 32, 365–377. <https://doi.org/10.52756/ijerr.2023.v32.032>
- Purnamasari, R., Winarni, D., Permanasari, A. A., Agustina, E., Hayaza, S., & Darmanto, W. (2019). Anticancer activity of methanol extract of *Ficus carica* leaves and fruits against proliferation, apoptosis, and necrosis in Huh7it cells. *Cancer Informatics*, 18, 1–7. <https://doi.org/10.1177/1176935119853174>
- Rasool, I. F. U., Aziz, A., Khalid, W., Koraqi, H., Siddiqui, S. A., Al-Farga, A., & Ali, A. (2023). Industrial application and health prospective of fig (*Ficus carica*) by-products. *Molecules*, 28(3), 960. <https://doi.org/10.3390/molecules28030960>
- Reveny, J., Maha, H. L., & Laila, L. (2023). A comparative study of phytochemical screening and DPPH radical scavenging activity of *Ficus carica* Linn. leaves extracts. *Tropical Journal of Natural Product Research*, 7(2), 2337–2340. <https://doi.org/10.26538/tjnpr/v7i2.12>
- Riaz, M., Khalid, R., Afzal, M., Anjum, F., Fatima, H., Zia, S., Rasool, G., Egbuna, C., Mtewa, A. G., Uche, C. Z., & Aslam, M. A. (2023). Phytobioactive compounds as therapeutic agents for human diseases: A review. *Food Science & Nutrition*, 11(6), 2500–2529. <https://doi.org/10.1002/fsn3.3308>
- Sharma, S., & Kumar, R. (2021). Free radical scavenging activity and GC-MS analysis of methanolic extract of *Ficus racemosa* L. leaves of Bundelkhand region. *Journal of Phylogenetic Research*, 34(1), 64–70. <https://doi.org/10.22271/phyto.2024.v13.i1e.14859>
- Spagnoli, F., & Yavari, A. (2022). History, archaeology and culture. In *The fig: Botany, production and uses* (pp. 1–8). CABI Digital Library. <https://www.cabidigitallibrary.org/doi/full/10.5555/20220190475>
- Tikent, A., Laaraj, S., Bouddine, T., Chebaibi, M., Bouhrim, M., Elfazazi, K., & Addi, M. (2024). Antioxidant potential, antimicrobial activity, polyphenol profile analysis, and cytotoxicity against breast cancer cell lines of hydro-ethanolic extracts of leaves of (*Ficus carica* L.) from Eastern Morocco. *Frontiers in Chemistry*, 12, 1505473. <https://doi.org/10.3389/fchem.2024.1505473>